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Supplementary Material

Below we include additional results and discussions that integrate the main text
of the paper “Likelihood-Free Frequentist Inference: Bridging Classical Statistics
and Machine Learning for Reliable Simulator-Based Inference”.

H. Breakdown of Sources of Error in LF2I Confidence Sets

In traditional statistical inference, confidence sets depend on the choice of test
statistic, the assumed distribution of the test statistic under the null, and the
amount of available data. In LFI, however, there can be additional sources of
errors. For the LF2I framework in general, and more specifically for ACORE and
BFF, we categorize these errors as follows:

e1: Estimation error in learning the odds (Section 3.1);
e2: Numerical error in evaluating the test statistic by maximization in ACORE

(Equation 8) or by integration in BFF (Equation 10);
e3: Estimation error in learning the critical values (Section 3.3.1) or the p-

values (Section 3.3.2).

Validity and power Validity is directly determined by e3. As shown in Sec-
tion 4, one can construct valid confidence sets regardless of how well the test
statistic is estimated, as long as the quantile regressor (Algorithm 1) or prob-
abilistic classifier for estimating p-values (Algorithm 5) are consistent and the
number of simulations B0 is large enough. In practice, we observe that the num-
ber of simulations B0 needed to achieve correct coverage is usually much lower
relative to B, the number of simulations needed to estimate the test statistic.
The power or expected size of the confidence set is, on the other hand, deter-
mined by both e1 and e2. The error e1 depends on the capacity of the classifier
for estimating odds and the training sample size B. The error e2 is a purely
numerical error and can be reduced by employing modern numerical optimiza-
tion and integration algorithms suitable for the problem at hand. Figure 13 –
and Supplementary Material K in general – o↵ers an empirical analysis of e2 on
Gaussian data of increasing dimensionality. Note that for this example we are
not employing any particular numerical optimization or importance-weighted
integration technique. We are simply generating a uniform grid over the param-
eter space and then computing the maximum or sum of relevant quantities over
the grid points to evaluate the ACORE or BFF statistics, respectively. Examples
in Section 6.2, instead, used modern algorithms available from SciPy [106].

Practical strategy for model selection To mitigate all sources of errors
for LF2I with the ACORE and BFF test statistics, we proceed as follows:

1. To estimate the odds function, select a probabilistic classifier and the
number of simulations B based on the cross-entropy loss on held-out data;7

7One can alternatively use the integrated odds loss (Equation 14). However, as shown in
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2. To compute the test statistic, choose modern numerical optimization and
integration routines, especially to avoid local minima/maxima in the com-
putation of ACORE;

3. To ensure valid confidence sets, select the quantile regressor and the train
sample size B0 so that we achieve nominal coverage across the entire pa-
rameter space according to LF2I diagnostics (Section 3.4) on a separate
set T 00.

I. Examples for Assumption 7

Below, we provide some examples where Assumption 7 holds, using well-established
results for the convergence rates of commonly used regression estimators:

• [68] shows that kNN estimators are adaptive to the intrinsic dimension d

under certain conditions. When bP is a kNN estimator with P in a class of
Lipschitz continuous functions, Assumption 7 holds with  = 2. More gen-
erally, with P in a Hőlder space with parameter 0 < �  1.5, Assumption
7 holds with  = 2� ([6, 50]).

• [69] show that under certain conditions, when bP is a kernel regression
estimator with P in a class of Lipschitz continuous functions, Assumption 7
holds with  = 2 and d the intrinsic dimension of the data. More generally,
with P in a Hőlder space with parameter 0 < �  1.5, Assumption 7 holds
with  = 2� [50].

• When bP is a local polynomial regression estimator with P in a Sobolev
space with smoothness �, Assumption 7 holds with  = �, where d is the
manifold dimension [10].

• [9] shows that under certain conditions, when bP is a random forest estima-
tor with D covariates with P in a class of Lipschitz continuous functions,
Assumption 7 holds with  = 2 when the number of relevant features
d  D/2.

More examples can be found in [50], [103] and [31].

J. Gaussian Mixture Model Example

Here we (i) provide details on the algorithms used to estimate critical values and
coverage in Figures 3 and 7, (ii) discuss results of experiments which account for
asymmetric mixtures, and (iii) include results for applying p-value estimation
to the problem in Section 6.1.

Regarding (i): The quantile regressor used to estimate C✓0 is a neural net-
work, with two hidden layers and 32 ⇥ 32 neurons, which minimizes the quan-
tile loss. Our experiments showed that using quantile boosted regression trees

Supplementary Material K.3, the odds loss is much more sensitive than the cross-entropy loss
to the value of the estimated odds, which can lead to the odds loss wildly fluctuating for
di↵erent values of B.
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Fig 9. GMM example with sample size n = 10 (left), n = 100 (center) and n = 1000
(right) and confidence sets constructed using p-value estimation. The plots show the estimated

coverage across ⇥ of 90% confidence sets for ✓. As before, conditional coverage is estimated

using the diagnostic branch of the LF2I framework.

led to equivalent results, but we opted for NNs due to their inherent smooth-
ing capabilities, which resulted in stabler estimates of the conditional quantile
function. The algorithm used to estimate coverage is a binomial Generalized
Additive Model (GAM) with logit link and a smoothing spline applied to the
independent variable, which is ✓ in that setting (see Algorithm 2). The two-
standard-deviation (±2�) prediction intervals are based on the Bayesian poste-
rior variance of the parameters in the fitted GAM object. See documentation of
the R package MGCV for more details. Figure 7 shows the estimated conditional
quantile function, both via Monte-Carlo (MC) and via quantile regression. The
plot also includes the upper ↵ quantile of a �2

1 distribution. Here B0 and the
number of MC simulations are both 50008, but the latter is again repeated for
every ✓0 on a fine grid. The size of each simulated sample is n = 1000.

Regarding (iii): So far the experiments have focused on symmetric mixtures,
where both components have the same probability of being selected. We also
repeated the above experiments with a mixing parameter equal to 0.8, i.e. when
the mixture is strongly unbalanced towards one mixture component but is still
bi-modal. In terms of coverage, the results were qualitatively the same as those
obtained in the case of symmetric mixtures.

Regarding (iv): we conclude by showing that p-value estimation leads to con-
fidence sets with correct conditional coverage, hence providing an alternative
to critical value estimation via quantile regression. Figure 9 presents the re-
sults obtained on the symmetric Gaussian mixture model with samples of size
n = 10, 100, 1000, which can be compared with the right panel in Figure 3. Al-
though all examples achieve correct conditional coverage, it must be noted that
p-values were estimated using B0 = 10000 to train gradient boosted classifica-
tion trees, instead of B0 = 1000 used in Section 6.1 and above. In practice we

8Increased with respect to the value used in Section 6.1 just to make the MC and Quantile
Regression curves smoother for visualization purposes. Coverage was achieved even at the
previous B0 = 1000.
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Fig 10. Confidence sets for known test statistics and bivariate Gaussian data. When
d = 2, our method for estimating critical values with B

0 = 500 simulations (“LR with
calibrated C”; green contour) returns 90% confidence sets that are close to the exact
LRT confidence sets (red contour) and smaller than the more conservative universal
inference via crossfit LRT sets (gray shading). The figures correspond to three random
realizations of observed data with n = 10 drawn from the Gaussian model with true
parameter ✓ = (0, 0) (indicated with a red star).

have indeed observed that estimating p-values via Algorithm 5 requires more
simulations than estimating critical values via Algorithm 1. Moreover, as al-
ready noted in Section 3.3.2, the procedure for p-value estimation has to be
repeated for each observed sample D, while critical value estimation is amor-
tized: once the quantile regressor is fitted, it can be used for any number of
observed samples.

K. Multivariate Gaussian: Scaling with Dimension

In this section, we assess how our procedures scale with parameter and feature
dimension for the (analytically solvable) problem of estimating the population
mean of d-dimensional Gaussian data. (This is an example where we can an-
alytically derive test statistics as well as the exact null distribution of the LR
statistic.) In Supplementary Material K.1, we first assume that the LR statistic
is known but not its null distribution, so that we can compare our calibrated
confidence sets to universal inference sets and the exact (uniformly most power-
ful) LR confidence sets. Thereafter, in Supplementary Material K.2, we consider
the standard LFI setting with a likelihood that is only implicitly encoded by
the simulator.

For the multivariate Gaussian (MVG) example, supposeX1, . . . ,Xn ⇠ N(✓, Id),
where Id is the d-dimensional identity matrix and ✓ 2 R

d is an unknown param-
eter. For this model, the sample mean Xn ⇠ N(✓, n�1Id) is a su�cient statistic,
so we can express our test statistics in terms of Xn. The likelihood ratio statistic
for testing H0,✓0 : ✓ = ✓0 versus H1,✓0 : ✓ 6= ✓0 is

LR(Xn; ✓0) = log
N(Xn; ✓0, n�1Id)

N(Xn;Xn, n�1Id)
= �n

2
kXn � ✓0k2. (25)
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Finite-sample confidence sets for known test statistic

d=10 d=20 d=50 d=100
Coverage of LR with calibrated C 0.91 ± 0.03 0.91 ± 0.03 0.88 ± 0.03 0.88 ± 0.03

Coverage of Universal Inference LRT 0.993 ± 0.008 0.997 ± 0.005 1.000 ± 0.000 1.000 ± 0.000

Fig 11. Confidence sets for known test statistic and d-dimensional Gaussian data.
Coverage and power of finite-sample confidence sets constructed via exact LRT, LR
with calibrated C, and universal inference via crossfit LRT (see text for details). All
methods achieve the nominal coverage of 0.9. When the likelihood ratio statistic is
known, our construction with B

0 = 5000 simulations yields the same power as the
exact LRT, even in high dimensions. By calibrating the critical values, one can achieve
more precise confidence sets and higher power than universal inference. See Figure 10
for example confidence sets in dimension d = 2. The di↵erence in precision and power
between the two methods increase with dimension d.

For the MVG example, it holds exactly that �2LR(Xn; ✓0) ⇠ �2
d
. We refer to

inference based on the above result as “exact LRT”. For example, the exact
LRT confidence set at level ↵ is defined as

RLRT(Xn) = {✓0 2 ⇥ : nkX̄n � ✓0k2  c↵,d},

where c↵,d is the upper ↵ quantile of a �2
d
distribution.

For the Bayes factor, we assume a proposal distribution ⇡ that is uniform
over an axis-aligned hyper-rectangle with corner points at a = (a, ..., a) and
b = (b, ..., b) 2 R

d for a < b. The exact Bayes factor for testing H0,✓0 : ✓ = ✓0
versus H1,✓0 : ✓ 6= ✓0 is

BF(Xn; ✓0) =
N(Xn; ✓0, n�1Id)

⇣
1

b�a

⌘dQ
d

j=1

h
1
2erf

⇣
b�Xn,jp

2n

⌘
� 1

2erf
⇣

a�Xn,jp
2n

⌘i . (26)
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Fig 12. LFI setting: When d = 2, BFF and ACORE 90% confidence sets are of similar
size to those constructed using the exact LR and BF. The true parameter ✓ = (0, 0)
(indicated with a star), n = 10 observations, B = B

0 = 5000 and M = 2500 samples
for BFF and ACORE. The figures show three random realizations of the observed data.

Finite-sample confidence sets in a likelihood-free inference setting

d=1 d=2 d=5 d=10
Coverage of ACORE 0.92 ± 0.03 0.92 ± 0.03 0.90 ± 0.03 0.90 ± 0.03
Coverage of BFF 0.94 ± 0.02 0.89 ± 0.03 0.96 ± 0.02 0.87 ± 0.03

Fig 13. LFI setting: Coverage and power for ACORE and BFF confidence sets and their
exact likelihood ratio test (LRT) and Bayes factor (BF) counterparts at dimension
d = 1, 2, 5 and 10 across 100 repetitions. Both ACORE and BFF return valid confidence
sets with coverage at or above the nominal confidence level 1 � ↵ = 0.9. The loss in
power relative the exact methods increases as d increases. (We use QDA to learn the
odds, with sample size B guided by Figure 14, a computational budget for maximization
and integration of M = 10000, and quantile regression gradient boosting trees with
B

0
= 10000.)
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See Supplementary Material K.3 for a derivation. We refer to inference based
on the above expression and high-resolution Monte Carlo sampling to compute
critical values as “exact BF”.

With the exact LRT and exact BF as benchmarks, we can assess the coverage
and power of our LFI constructed confidence sets with increasing parameter and
feature dimension d.

K.1. Finite-Sample Confidence Sets for Known Test Statistic

We start with an LFI setting where we assume the test statistic is known, but
not its null distribution and critical values. Recently, [109] proposed a general
set of procedures for constructing confidence sets and hypothesis tests with
finite-sample guarantees. One instance of universal inference uses the crossfit
likelihood-ratio test, which averages the likelihood ratio statistic over two data
splits; see also recent work by [37], which compares di↵erent universal inference
schemes on MVG data. Our LFI approach can also produce valid finite-sample
confidence sets for known test statistic by calibrating the critical value as in
Algorithm 1.

Figure 10 compares three “Exact LRT” sets with confidence sets constructed
with our method for estimating the critical value (“LR with calibrated C”), and
confidence sets via universal inference with crossfit LRT (“Universal Inference
LRT”). The dimension here is d = 2, the true (unknown) parameter is ✓⇤ =
(0, 0), and the sample size is n = 10. By calibrating the critical value, we can
achieve valid confidence sets similar to exact LRT for a modest number of B0 =
500 simulations. Universal inference does not adjust the critical values according
to the value of ✓, and pays a price for its generality in terms of larger confidence
sets and lower power.

Figure 11 extends the comparison to coverage and power in higher dimensions
d. As before, we observe a sample of size n = 10 from a MVG centered at
✓⇤ = 0. We construct confidence sets using exact LRT, LR with calibrated C,
and universal inference with crossfit LRT for 100 draws from the MVG. We then
test H0,✓0 : ✓ = ✓0 versus H1,✓0 : ✓ 6= ✓0 for di↵erent values of ✓0 at increasing
distance k✓0k from the origin. We reject H0,✓0 if ✓0 is outside the constructed
confidence set. In this example, coverage is measured by the proportion of times
the parameter value ✓0 = 0 is (correctly) included in the confidence set over
100 such repetitions. Similarly, power is measured by the proportion of times a
parameter value ✓0 6= 0 is (correctly) outside the constructed confidence set. For
better visualization, we have chosen the test points ✓0 so that we have roughly
an equal number of test points at each squared distance k✓0k2.

The table at the top of the figure shows that both “LR with calibrated
C” and “Universal Inference LRT” control the type I error at level ↵ = 0.1
for dimensions d between 10 to 100. Universal inference, however, tends to be
overly conservative. As for the two-dimensional example, our method achieves
almost the same power as the exact LR test, even for d = 100 and a modest
budget of B0 = 5000 simulations. Universal inference has much lower power,
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as expected. The di↵erences in power between the two methods grows with
increasing dimension d.

K.2. Finite-Sample Confidence Sets in an LFI Setting

Next, we consider the more challenging LFI scenario where one is only able to
sample data from a forward simulator F✓, and hence needs to estimate both
the test statistic and critical values. As before, we simulate observed data of
sample size n = 10 from a d-dimensional Gaussian distribution with true mean
✓⇤ = 0, but now we estimate both the test statistics and the critical values for
controlling the type I error. We use ACORE to approximate the LRT, and BFF

to approximate tests based on the Bayes factor with a uniform prior over the
hyper-rectangle [�5, 5]d.

Following the strategy outlined in Supplementary Material H, we select a
quadratic discriminant analysis (QDA) classifier to estimate the odds, and quan-
tile regression with gradient boosted trees to estimate cuto↵s at level ↵ = 0.1.
Figure 12 compares ACORE and BFF confidence sets when d = 2 to the ex-
act LRT and exact BF counterparts (achieved with computationally expensive
MC sampling to estimate critical values). Both ACORE and BFF achieve simi-
larly sized confidence sets as their exact counterparts, with modest budgets of
B = B0 = 5000 simulations and M = 2500 evaluation points for maximization
or integration.

Figure 13 shows the coverage and power of these methods as the dimension
d increases. We use the same approach as in Supplementary Material K.1 to
compute the power over 100 repetitions. First, we observe that both ACORE and
BFF confidence sets consistently achieve the nominal 0.90 confidence level,9 even
in higher dimensions. Next, we consider power. Loosely speaking, the exact LRT
and BF power curves can be seen as upper bounds on the power of ACORE and
BFF, respectively. The results indicate that ACORE and BFF confidence sets are
precise in low dimensions, but their power drops as d increases.

A closer look (see Supplementary Material K.4) indicates that the loss in
power for d � 5 is primarily due to numerical error in the maximization or inte-
gration step (referred to as error e2 in Supplementary Material H) of ACORE and
BFF, respectively. Hence, we foresee that the current implementations of ACORE
and BFF with uniformly spaced evaluation points would significantly benefit
from more e�cient numerical computation. For maximization, higher e�ciency
approaches have been suggested in the hyper-parameter search literature for ma-
chine learning algorithms, such as kernel-based Bayesian optimization [64] and
bandit-based approaches [73] (see [43] for an overview). For integration, one
could employ more e�cient approaches that rely on, e.g., adaptive sampling
[60, 72], nested sampling [42, 51] or machine learning algorithms [8, 45].

Here we provide (i) the analytical derivations for the marginal distribution
and Bayes factor in the multivariate Gaussian setting, and (ii) Supplementary

9The coverage falls within or above expected variation for 100 repetitions, which is in the
range [84, 95].
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Material K.2 details for the probabilistic classifier selection and the analysis of
the drop in power for ACORE and BFF at d = 5 and d = 10.

K.3. Analytical Derivations

Given that the covariance matrix is ⌃ = Id in this setting, the marginal distri-
bution FX has a closed form solution for any a,b 2 R

d, which can be expressed
as follows:

FX(x) =

Z b
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(2⇡)�

d
2 det(⌃)�
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In this setting, the proposal distribution ⇡ is uniform over an axis-aligned
hyper-rectangle with extremes a = (a, ..., a) and b = (b, ..., b) for a < b 2
R. Since Xn is a su�cient statistic, the exact Bayes factor for the Neyman
construction when testing H0,✓0 : ✓ = ✓0 versus H1,✓0 : ✓ 6= ✓0 is equal to:

BF(D; ✓0) =
N(Xn; ✓0, n�1Id)R b

a N(Xn; ✓, n�1Id)d⇡(✓)

=
N(Xn; ✓0, n�1Id)

⇣
1

b�a

⌘d R b
a N(Xn; ✓, n�1Id)d✓

=
N(Xn; ✓0, n�1Id)

⇣
1

b�a

⌘dQ
d

j=1

h
1
2erf

⇣
b�Xn,jp

2n

⌘
� 1

2erf
⇣

a�Xn,jp
2n

⌘i ,

where Xn,j is the j-th coordinate of Xn.

K.4. Details on Section K.2

Figure 14 (left) compares cross-entropy loss curves for the QDA (the best clas-
sifier for the Gaussian likelihood model) and MLP classifiers. As we increase
B, odds estimation becomes more accurate, and we expect to see a decrease in
both cross-entropy loss and integrated odds loss, as shown in Figure 14 (right).
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Fig 14. Left: Cross-entropy loss in learning the odds versus the sample size B (Algo-
rithm 3) for a QDA and MLP classifier, as well as the true cross entropy, for the
Gaussian likelihood model in dimensions d = 1, 2, 5 and 10. QDA has the lowest cross-
entropy loss among the classifiers we considered (of which MLP is one example). The
values B at which the cross entropy plateaus are used as the sample sizes for learning
the odds at various dimensions. Right: The integrated odds loss generally decreases
with increasing B, as expected, though it is noisier (the presence of small probabilities
blows up the odds ratio). For larger values of B, the integrated odds loss should be more
stable.

We showed in Section 4 that the power of BFF is bounded by the integrated
odds loss. In practice, this loss may be more stably estimated for larger B,
which would make it an attractive alternative to the cross-entropy loss. The
performance di↵erence in Figure 14 is reflected in Figure 16, highlighting the
importance of choosing the best fitting classifier.

To pinpoint the cause of the degradation in power in high dimensions for
ACORE and BFF in Supplementary Material K.2, we separate the error in esti-
mating the odds from the numerical error in the maximization or integration
step for the test statistic (errors e1 and e2 in Supplementary Material H). Fig-
ure 16 shows that the QDA estimation error is negligible at both d = 5 and
d = 10 (as opposed to MLP estimation error). To isolate the numerical error,
Figure 15 shows the estimated ACORE and BFF statistics using the analytical
odds function. Even with a large budget of M = 30000, we underestimate both
the odds maximum and the integrated odds across the parameter space, result-
ing in an over-estimation of the ACORE and BFF test statistics.

L. Computational Stability for BFF

When computing the BFF statistics for the Neyman construction hypothesis
testing, the denominator is approximated by an average in the following way:

⌧(D; ✓0) :=

Q
n

i=1 O(Xi; ✓0)R
⇥ (
Q

n

i=1 O(Xi; ✓)) d⇡(✓)
⇡

Q
n

i=1 O(Xi; ✓0)
1
m

P
m

j=1

Q
n

i=1 O(Xi; ✓j)
,

where ✓j ⇠ ⇡(✓) for j = 1, ...,m. In practice, the product of odds can quickly
run into overflow/underflow. If one assumes m  O(Xi; ✓j)  M for all Xi, ✓j ,
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the product over n samples can range from mn 
Q

n

i=1 O(Xi; ✓j)  Mn which
could be below or above machine precision depending on the values of m and
M respectively. Running computations in log-space provides computationally
stable calculations even for large samples. First, we can express the test statistic
approximation in the following way:

⌧(D; ✓0) ⇡
Q

n

i=1 O(Xi; ✓0)
1
m

P
m

j=1

Q
n

i=1 O(Xi; ✓j)
=

exp
Pn

i=1 log(O(Xi;✓0))

1
m

P
m

j=1 exp
Pn

i=1 log(O(Xi;✓j))
.

Let  0 =
P

n

i=1 log(O(Xi; ✓0)) and  j =
P

n

i=1 log(O(Xi; ✓j)). Computing the
log-space version of the BFF test statistics then leads to

log(⌧(D; ✓0)) =  0 � log

0

@ 1

m

mX

j=1

exp j

1

A =  0 + log(m)� log

0

@
mX

j=1

exp j

1

A .

The above can be made computationally stable by using any of the “log-sum-
exp” implementations available (such as in SciPy, [106]).

Fig 15. We estimate the BFF and ACORE test statistics using exact odds, so the only error is

due to numerical estimation of the denominator with N = 30000 uniform samples. We see

that as d grows, this numerical estimation quickly becomes imprecise, even for large values of

N .
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Fig 16. Odds classifiers trained on B samples, evaluated on 1000 test samples. QDA (top

row) fits better than MLP (bottom row), and QDA with B = 105 fits well.
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